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The method of solution of the problem already discussed in [ 1 I is re- 
commended. This method does not require the construction of “conical 
solutions”. It allows one to solve other problems which reduce to a hyper- 
bolic system of equations with boundary conditions on the moving bound- 
aries. 

1. Formulation of the problem. In an undisturbed gaseous medium 
we assune the YZ plane to coincide with the surface of the piston; at 
instant t = 0 the piston has started to move along the X axis at constant 
velocity U; a shock wave travels through the gas at velocity D. In the 
initial state the gas density is ps, the velocity of sound is co, whilst 
behind the wave-front they are p, c, respectively. We assune the gas to 
be an ideal one with isentropic index y. The velocity of the wave with 
respect to the piston is denoted by V, so that D = II+ V. Introduce para- 
meter 6 = l/No2 where M,, = D/co. We then have the known expressions 

h 
5=;= l+(h-l)~’ 

v=p, 1 + (h - 1) F p$= Th+l)__ ( h=l$+ 

Having obtained the undisturbed solution, we deal with the propaga- 
tion of the shock wave from a slightly curved piston as a linear approxi- 
mation. Without losing generality we may consider the piston surface to 
be bent in one direction (only) and to be in the form c(Y). We employ a 
system of coordinates in which the piston is at rest. Within the region 
0 < X < Vt we have the following linearised equations for the pressure 
disturbance p’ and the velocity components ux' and uy' 

Changes in density p’ are eliminated by using the adiabatic condition 

316 
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aP’ d’ 
3i=C at 

The boundary condition at the wall will equate the normal velocity 
component to zero, u ' = 0, (for the linear approximation with X = 0). 
In accordance with the second of the equations (1.1) we also have 
dp’/dX= 0. The condition at the front of the shock wave is derived from 
12 1. Note that, for an ideal gas, the following is valid: 

-i2[g(gH =6< 1 

Using the conventional notation we have 

u2.c I+5 v#‘=- ayv v*t=~P’~ 
&_I-6 I 

at 
- 2p,up when X=Vt (I.21 

The displacement of the wave-front from the plane X = Vt is denoted 

by f(Y, t). To eliminate 5_(Y, t> from the boundary conditions we differ- 
entiate the first of the equations (1.2) with respect to time: 

Using (1.1) and (1.2) we obtain 

vag= ($_k$j!T$ when X = Vt 

The initial conditions come from the fact that the wave-front when 
t = 0 coincides with the surface of the piston where v l = 0 always. In 
accordance with (1.2) p’ = 0 when t = 0. The velocity Component v ' at 
the initial instant is not zero, but is given by v,'(O) = - Udc/$Y. 

Let E(Y) = A exp (ikY), where A and K are both constant, and kb << 1 
(small disturbance or displacement). The dependence of all quantities on 
the coordinate Y is then expressed by the multiplier exp (ikY). Introduce 
the following notations: 

p’Ipc=w, vx’ = u, VY’ = - iv 

We also make the following transformation: 

kX=x, kct = y 

‘Ihe problem then reduces to solving the system 

(l-3) 

with boundary conditions 
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U = 0 * = 0 when 
’ ax 2= 0; u = Aw, g = BW whenx = py (6 < 1) (l-4) 

where 

and initial conditious 

u=w= 0, 21 = vg when% zy=O (v,,=WlcA) {1.5) 

Note that that function &, y) satisfies the equation 

2. Selrtioa of the baadmy-value pmblem. Iutroduce the new 
variablesr amI6 u&g& formlss 

y = rowae, x = r 81nh f-J 
I 

r =tfy2-x2, teAb 8 = 2. 
Y (2.1) 

We multiply the first of Equations (1.3) by cash 8 sud add it to the 
second multiplied by sinh 8; we then interchange the positions of cash 0 
and sioh 8. 'Ihis results, finally, in the system 

Equation (1.6) is transformed into the fom 

a%0 1ato 
~+,aT-~ag+W=o (2.3) 

Ihelinex= 0 correspondsto6= 0, linex=@y correspomdsto 
8=8@ mheretanh90= 8. In the third eqaation of the systtln (2.2) we 
will put 8 = 8, and to it we will add the prodmt of &/ax= Bo and 
tanh 8,, which also holds along 8 = 6,. 'l'he origin of coordinates x = 
y=O isgivenbyr= 0. As a result, the bouudary conditions aud the 
initial conditions take the follow& form: 

u = 0, aw 0 aqy= t st e=o 

u=Aw, g = piab e, + oenb e,) w at e-e, 

u=w=o, v = a$ at r=O 
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Now let us make use of the Laplace transformation for the variable r 
according to the formula 

u1= 9, $!+o at 8=0 

ZQ = AwIt PVl - v. = (hk 8, + ewh e,) ~1 at O=eO 

(2.7) 

(2.3) 

(2.9) 

Besides it follows from the Replace trausfonuation theory that all 
transformed functions should fulfill the condition 

f1 (P, 4 -+ 0 at Rep++m (2.10) 

Make the substitution 

p =m1all q, w1 (P, 0) = w2 (9, wcmb9 

‘Ihen, instead of obtaining (2.8) for function tvt(q, 61, we get 

a% a% ---5 
a? a02 

9 

‘lhe general solution of this wave equation is of the form 

w2 (9, 0) = F (9 + 0) + 0 (9 - 0) 

where F and Cp are arbitrary functions. It is clear from (2.9) that 
do,/% = 0 when 8 = 0, therefore Mq) = F(q) and 

w2 (9, 0) = F (9 + 0) + F (9 - 0) (2.11) 

‘lhe second of Equations (2.7) can be written thus: 

$ {pul - [F (q + 0) - F (q - f91 +al~~‘hl = 0 

From this we get 
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pu1- [F (q + 0) - F ((I - 0)) +atnc&Q = y(Q) 

where ##) is an arbitrary function. It is known [3 I that 

fP= 0) = f(O) = limpf,(p, B) for p-+ 00 

It follows, therefore, that 

(2.12) 

0 

(2.13) 

fn accordance with (2.10) we also have lim trll = 0 when p 3 = and 
lialvl= oflfienq+a,. In EQuation (2.12) we turn our attention to 
Req-aoo. Ihen, the L.H.S. vanishes for any value of 8, i.e. (p(6) r 0 
snd 

Here let us put 6 f 8,. Making use of (2.8) we find that F(q) satis- 
fies the finite difference equation 

It is knowu E4 I that the general solution of a aou-h~~~us linear 
finite difference equation is the sum of the general solution of the 
homogeneous equation plus a particular solution of the equation includ- 
ing its R.H.S. 'lhe general solution of the Hindus equation is pro- 
portionately a periodic function. In bation (2.14) this period is 2 6,. 
lbe uniqueness of the solution of (2.14) is insured by the circumstance 
that P(q) + 0 when Re q -+ OD in accordance with (2.13). The homogeneous 
equation corresponding to (2.14), for sufficiently high valuers of Re q, 
takes the form 

F(q + 0,) = -;+P(q--%) 

i.e. with increase in Be q function, F(q) grows indefinitely. Therefore, 
condition (2.13) can only be satisfied if we equate the arbitrary 
periodic multiplier to zero. The particular solution, which vanishes when 

%9-,=, tahes the form of a series. 
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F(q) = i &e--W+l) 4 

n=iJ 

(2.15) 

Put this expression into (2.14). Equating coefficients of similar 
Powers, to evaluate the quantities B,, = 2An cash (2n + 1) 8, we arrive 
at the expression 

B, = - 2~7~ sinheo B1 = Bo(~------ - 26) +tmbeo 

a -+nheo ’ a +tA13eo 
(2.16) 

[a -tsnh(2n - 1) ($1 B,_, _I- 26B, + [n $- tanh(%z -+ 3) @,] B,+l = 0 (n = 1,2,3,...) 

In accordance with (2.11) we have 

w.,(q, 0) = i B,,~~@$~~ 1 i::. e- (M-1) q (2.17) 
n=o 

To demonstrate the convergence of the solution obtained, we examine 
those values of n in EQuation (2.16) for which 2nOO>> 1. 'lben instead 
of (2.16) we get 

(a - 1) B,_l + 2bB, + (a f 13 B,,, = 0 (2.18) 

The solution of this difference equation with constant coefficients 
has the form Bn = pn. ‘Ike value of p can be found from the quadratic 

(u + 1) p” -t 2bp + (a - 1) = 0 (2.19) 

whose roots are negative and of absolute value less than unity. In 
accordance with Poincare-s theorem [4 1 when Re q A 0 the following 
series converges: 

(2.20) 

and, with it also, the series (2.17) for any values of 8 d 8,. 

Now, returning to the variable p, we bear in mind that if p = sinh q 
thencoshq=dp’+ lande-'J=dp'+ 1 -p; wehave 

WI (p, e) = g 
n-0 

Using the known formula for representing Bessel functions 131 
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we obtain 

Now, to return to the original variables X, ct, we use the formulas 

t=hxt)/l-4, 
X 

T=Ct (2.22) 

.x.b (2n + 1) 0 -_ 5 [( 1 + ,)gn+’ _t (1 - qn+q (1 - q@+‘/z) 

The pressure at the front of the shock wave is given by the expansion 

n=o 

let us insert (2.23) into the second of Equations (2.5) and integrate: 

(2.23) 

v (r, 6,) = v, + (Bme, $-mz 00) 2 f&s j Jim+1 (4 dx 
n=o 0 

It is known that for any value of n the integral on the R.H.S. when 
s + 00 equals uuity. Note also the relationship which is obtained from 
(2.14) and (2.20) when q = 0: 

(2.24) 

Bearing in miud that the quautities u(r, e,) a& b(s) are proportional 
to each other we arrive at the following expression for the shock-wave 
front: 

It can be seen from this that f(s) + 0 when s + PD. 

The latter result can be expressed in a form without integrals 

t+=Jo(+$j -DnJen (4 (2.26) 
n==1 
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where 

D, = &{(a + tub (2n + 1) 9,~ B, - [a - t.+ (2n - 1) 4,] B,-,) (2.27) 

3. Certain limiting cases. To obtain asymptotic formulas for 
r >> 1 we use the expression 

Jm+l(r) -(- i)“c[sin(r- $7r) + 4(2n~r1)a-iCOS (r- +E)] t3-l) 

and the relation 

; (- i)"B,-0 (3.2) 
n=o 

which is obtained from (2.14) putting q = l/2 in and u f b. 

Using (3.1) and (2.21) we obtain 

At the shock-wave front, in view of (3.2), the first swaation 
vanishes, so that there remains 

w(r, 43)-N 
eosh (s - l/r x) 

1/2nsS 
(N = 4 5 (- l)%(n + 1) B”> (3.4) 

n==o 

With a strong shock-wave (c, = 0 or U-P W) 6 = 0 and a = b. Che of 
the roots of Equation (2.19) becomes (- l), so that the series (3.4) 
diverges. We conclude from this that the asymptotic behaviour will differ 
substantially, namely, decay will be slower. In this caseEquation (2.14) 
takes the form 

.~.~q[F(q+eo)--(q--o)l- UcoahQ [F (q + eo) + F (q - eo)] = 2)od$ (3.5) 

As before, we look for a solution in the form of (2.15), and instead 
of obtaining (2.16) for Bn we! have the expression 

&= - ll"l;;)oo ) [a -+2n- i)e,]u,_, + [U Stlmh (2u + I) e,] B, = 0 

(n = 1,2,3,. . .) (3.6) 

Convergence of the series (2.20) is obvious with such coefficients. 
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Because B,,/B, _ 1 < 0 for all values of n, in contradistinction to (3.2), 
we get 

With the help of (3.31, with 6 = 0 we arrive at the following formula: 

w (r, e,) = M sin (S - 1/a x) 

Jfzi (3.8) 

Now we will obtain a formula which generalises (3.4) and (3.8) for 
the case of small but finite values of 6. Using integral representations 
of Bessel functions 

Jmsl (r) = + Im 
[S 

t?- (sn+l) q8tnh(rsiahQ) dq] 

0 

instead of (2.23) we get 

(3.9) 

Furthermore, from (2.14) it follows that 

2eoshfj 

w!2 (a, 00) =s(nh.Q _+ aMsh2q + b {2.i%? F (cl + 00) - ~O~i’h~O~ (3.10) 

It is evident that for q + l/2 i R and 6 + 0 the denominator of (3.10) 
vanishes and the main contribution to integral (3.9) for s >> 1 is the 
point _q = 1/2in, whilst the expression in the curly brackets in the last 
formula can be replaced by its value for q = l/2 in and 6 = 0. 

2iF (-$- in + 0,) - v. shod0 = i [F (f ix + 6,) - F (f irt - e,)] - vO~~dO + 

+i[F($-ir+fQ+F(+irc-f30)]=$M (3.11) 

The first two bracketed terms vanish because of the relation 

i [F ($ ix + 0,) -F ($ix - @,)I = 7.J0~inhe0 

which follows from (3.5) for q = l/2 i n. Note that in Formula (3.4) the 
coefficient N wiLl be equal to 

LV = i a2 aQa w2 (q, 60) when q=fix 

After double differentiation we have from Equation (3.10) 
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4M 
N = - (h + 1) 62 (for 6 < 1) 

Thus, the series (3.5) diverges as S". Using (3.9) 
find that for s >> 1 and 6 << 1 

(3.12) 

and (3.10) we 

w (r, 6,) = F 1 
sin (8 sin (9) cos ‘p sin 2p, 

(a cos 2ff f Q2+ (sin 2q~)~ + 
0 

Now, let us make the substitution sin Cp= x. 'lhe main contribution in 
the integral COIWS from the neighbourhood of point n = 1, and, there- 
fore, on changing the lower limit of integration to - m where at all 
possible we put x = 1 

w(r,oO)--y- (a-Q2+S(1__4 s 

sin (~2) VI - I& 

-CXJ 
(*XL3) 

On putting a L-L l/8&+ 1)sa2, l- x = l/8@+ 11~3'~ we arrive at 
the required formula 

MI/h+16 
w(r, $,I- /,, Im {$ (u.) exp [i (.s - f 77fjj 

0 

Note that function #(a) can be represented thus: 

(3.24) 

If, in (3.13), the magnitude of s is fixed, and 6 -+ 0, then a + 0 and 
Formula (3.13) transforms into (3.8). If 6 is small, but fixed, whilst 
s + o=,, then& + mand we arrive at (3.4) taking into account (3.12). 

l&e asymptotic behaviour of the function h- 1 c(s) is established by 
substituting (3.4) and (3.8) in the second of Formulas (2.5): 

c’ (8) N I L--P sin (s - ‘lo it) 
A vo ;?nrnhB, J/23 

when S#O 

E 63) L--- 1 ros(s -11/d 7L) 
A co 2 Jfh(h+lf y’2?rs 

when 6 = 0 (3.16) 

Note that with a strong shock wave (8 = 01, in view of (3.61, Formula 
(2.27) reduces to the form aDn = [a + tsnh (2n + 1) 8, IB,. 
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Formula (3.13) for s >> 1 can be written thus 

-- 

In a similar manner to (3.15) we find 

%titut~ug in (2.5) we arrive at the formula 

: (s) M 8 
-cu-- 

A 
-----=- Re {exp Ii (s - + z)]+ (a)} 

DO an I/a 

(3.17) 

(3-18) 

If we make use of the Fremel tabulated integrals 

S(z) = \ sinP&, 
;t 

C (z) = [ cos t2dt 
0 

we will write (3.18) in the form 

5(s) M 1 
--““-.------ 

A ~(cos(s-$~)-~,cos(s+~)+ 
Go 2I/h(h1_1)$4% 

+ 2 v”G[s (~;;iccos (S + 05 - -$-z) -C (a/i] sin(s + a - $zt)]j (3.19) 

Let us deal with the case of weak shock waves (6 + 1). Here tanh 8, E 
6-b 1, so that 8,+ 00. 
A, = - l/2 vO. 

From coefficients A, in (2.15) there only mmahs 
lhen (2.21) yields 

~(r, 0) = V,,,!, (f-j =mb 0 

From this re obtain the following fomnrla for the pressure disturb- 
ance p’, in terms of its undisturbed value p: 

‘Ihe behavior of g(s) when 6 + 1 is easily determined if we bear in 
mindthatF(q+80).,0~~8,-+m.Asa-, 1, b+O,wefindfrom(2.14> 

q(q, 0,) z:F (q - 6,) = - &,.1n&r-~Q ceshq 

therefore 

Wl (PI %) = - 2V@nh 6, (r/p” + $ - p)” 

and using the tsbles of the originals and the reflections, ma find 
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If we insert this into (2.5) for 8, >> 1 we find 

CCIV 

ar= _&),Ja(rl or 

r 
v(r,8,) =v,[l-2s +q 

0 

Making use of the well-known fomulas 

we finally arrive at 

v (r. %I E 0) _ -=-- Jl (4 2- 
00 A when E-+ 1 s 

and this coincides with the corresponding formula in I1 1. 
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